Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой (к911) Физика и теоретическая механика

Пячин С.А., д.физ.- мат. наук, профессор

26.04.2024

РАБОЧАЯ ПРОГРАММА

дисциплины Нелинейная оптика

для направления подготовки 12.03.03 Фотоника и оптоинформатика

Составитель(и): д.ф-м.н., профессор, Иванов Валерий Иванович

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 25.04.2024г. № 4

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протокол

Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2025 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2025-2026 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от2025 г. № Зав. кафедрой Пячин С.А., д.физмат. наук, профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2026 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2026 г. № Зав. кафедрой Пячин С.А., д.физмат. наук, профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2027 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2028 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от2028 г. № Зав. кафедрой Пячин С.А., д.физмат. наук, профессор

Рабочая программа дисциплины Нелинейная оптика

разработана в соответствии с Φ ГОС, утвержденным приказом Министерства образования и науки Российской Φ едерации от 19.09.2017 № 949

Квалификация бакалавр

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 4 ЗЕТ

Часов по учебному плану 144 Виды контроля в семестрах:

в том числе: экзамены (семестр) 4

контактная работа 34 РГР 4 сем. (1)

 самостоятельная работа
 74

 часов на контроль
 36

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	4 (2.2) 17 3/6			Итого
Вид занятий	УП	РΠ	УП	РП
Лекции	16	16	16	16
Практические	16	16	16	16
Контроль самостоятельно й работы	2	2	2	2
Итого ауд.	32	32	32	32
Контактная работа	34	34	34	34
Сам. работа	74	74	74	74
Часы на контроль	36	36	36	36
Итого	144	144	144	144

	1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)							
	Нелинейные свойства вещества (нелинейные восприимчивости). Распространение электромагнитной волны в нелинейной среде. Нелинейная геометрическая оптика, нелинейное параболическое уравнение. Самофокусировка и самоканализация пучка света. Фундаментальные аспекты нелинейной оптики, генерация гармоник и смешение частот, пространственный синхронизм и способы его создания. Параметрические процессы. Многофотонные процессы. Нелинейная спектроскопия. Распространение ультракоротких оптических импульсов в световодах.							
1.2								

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ							
Код дис	Код дисциплины: Б1.О.12							
2.1	2.1 Требования к предварительной подготовке обучающегося:							
2.1.1	Волны и оптика							
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как							
	предшествующее:							
2.2.1	Научно-исследовательская работа							
2.2.2	Преддипломная практика							
2.2.3	Волноводная фотоника							

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с фотонными технологиями обработки информации, проектированием, конструированием и технологиями производства элементов, приборов и систем фотоники и оптоинформатики

Знать:

Основные понятия и методы математического анализа, дифференциальное и интегральное исчисление; векторный анализ и элементы теории поля; дифференциальные уравнения и уравнения математической физики; теорию вероятностей и математическую статистику, физические основы механики, электричества и магнетизма, физики колебаний и волн, квантовой физики, электродинамики, статистической физики и термодинамики, атомной и ядерной физики, оптики; физическое материаловедение, химию, физические основы электронных устройств, основы современных представлений о структуре, оптических, физических и физико-химических свойствах оптических материалов различных классов, определяющих сферу их применения в фотонике и оптоинформатике

Уметь:

Применять математическое моделирование на базе прикладных пакетов программ; использовать основные законы естественнонаучных дисциплин в профессиональной деятельности; объяснять и анализировать условия наблюдения и регистрации оптических эффектов, уметь использовать данные об оптических материалах для прогнозирования оптических и физико-химических свойств новых материалов фотоники

Владеть:

Методами математического анализа, описания физических явлений и процессов, определяющих принципы работы различных технических устройств; навыками применения теоретических знаний для объяснения наблюдаемых оптических явлений и сопутствующих физических процессов; основными теоретическими представлениями, позволяющими анализировать результаты оптических и электрических измерений.

электромагнитной волны в нелинейной

среде. /Лек/

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ Код Наименование разделов и тем /вид Семестр Компетен-Инте Часов Примечание Литература занятия занятия/ / Kypc ции ракт. Раздел 1. лекции 2 1.1 1. Нелинейные свойства вещества 4 ОПК-1 Л1.1 0 (нелинейные восприимчивость, модель Л1.2Л2.1Л3. ангармонического осциллятора, методы квантомеханических расчетов и **Э1 Э2** методика измерений, резонансные ситуации). Распространение

1.2	2. Нелинейная геометрическая оптика, нелинейное параболическое уравнение,	4	2	ОПК-1	Л1.2Л2.1Л3.	0	
	критерии устойчивости плоской волны в нелинейной среде. Самофокусировка и самоканализация пучка света. /Лек/				Э1 Э2		
1.3	3. Генерация гармоник и смешение частот, пространственный синхронизм	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3.	0	
	и способы его создания.				1		
	Фундаментальные аспекты нелинейной				Э1 Э2		
1.4	оптики. /Лек/ 4. Самосжатие импульсов излучения.	4	2	ОПК-1	Л1.1	0	
1,4	Фазовая самомодуляция.	T		OTIK-1	Л1.2Л2.1Л3.		
	Параметрические процессы,				1		
	параметрические генераторы. /Лек/		_		91 92	_	
1.5	5. Спонтанные вынужденные процессы рассеяния света. Механизмы	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3.	0	
	вынужденных рассеяний				1		
	комбинационное (рамановское)				Э1 Э2		
	рассеяние, вынужденное рассеяние Мандельштамма-Бриллюэна,						
	магнитооптика, взаимодействие						
	инфракрасных волн с упругими						
1.6	волнами в кристаллах. /Лек/	4	2	OFFIC 1	H1 2H2 1H2	0	
1.6	6. Когерентные взаимодействия. Двухуровневая модель для одно- и	4	2	ОПК-1	Л1.2Л2.1Л3.	0	
	двухфотонного резонанса, эффект				91 92		
	самоиндуцированной прозрачности,						
	оптическая нутация, фотонное (световое) эхо, адиабатическое						
	прохождение, импульсы,						
	нестационарные нелинейнооптические						
	эффекты в резонансных условиях, динамика спектроскопических						
	переходов. Многофотонные						
	процессы. /Лек/						
1.7	7. Нелинейная спектроскопия. Лэмбовский провал, двухфотонный	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3.	0	
	резонанс на встречных пучках,				1		
	способы создания узких нелинейных				Э1 Э2		
	резонансов, методы спектроскопии						
	высокого разрешения, конкретная оптическая спектроскопия. /Лек/						
1.8	8. Распространение ультракоротких	4	2	ОПК-1	Л1.1	0	
	оптических импульсов в световодах.				Л1.2Л2.1Л3.		
	Ультракороткий оптический импульс и его взаимодействие со средой, импульс				1 91 92		
	в светово-де, нелинейные процессы,						
	солитон и его перспективное						
	использование для передачи информации по световодам,						
	резонансные эффекты, явления						
	бистабильности и возможности ее						
	использования в интегральной оптике. /Лек/						
	Раздел 2. Практические занятия						
	* * *		1		I .	L	1

2.1	Волновое уравнение для электромагнитного поля в нелинейной среде. Поляризация диэлектриков в световом поле. Нелинейные оптические восприимчивости и их свойства. Классификация нелинейных эффектов в оптике. Материальное уравнение для анизотропной среды. Квадратичнонелинейные и кубично-нелинейные материалы. Нелинейные оптические кристаллы. /Пр/	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
2.2	Однофотонные и многофотонные процессы. Виды многофотонных переходов и оценка их вероятности. Квантовомеханические закономерности многофотонных переходов. Виртуальные состояния. Динамический эффект Штарка. Экспериментальное исследование многофотонных процессов. Нелинейный (многофотонный) фотоэффект. /Пр/	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
2.3	Термооптические явления при сверхвысоких интенсивностях света. Область сверхсильных световых полей. Оптический пробой среды. Физические процессы, сопровождающие оптический пробой в твердом теле. Линейное и нелинейное поглощение. Ударные и тепловые нелинейные эффекты. Понятие о силовой оптике. Лучевая прочность. /Пр/	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
2.4	Понятие о самовоздействиях световых волн. Физические механизмы, приводящие к зависимости показателя преломления от интенсивности света. Влияние рефракционного индекса на характер эволюции светового пучка. Самофокусировка и самоканализация световых пучков. Многофокусная структура светового пучка при самофокусировке. Оптическая бистабильность и ее применение. /Пр/	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
2.5	Модели эволюции нелинейных волн: уравнения Римана, Бюргерса, Кортевега-де Фриза, нелинейное уравнение Шредингера, обобщенное эволюционное уравнение. /Пр/	4	2	ОПК-1	Л1.2Л2.1Л3. 1 Э1 Э2	0	
2.6	Соотношение между нелинейностью, дисперсией и диссипацией. Основные режимы распространения лазерных импульсов. Модуляционная неустойчивость. /Пр/	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
2.7	Физика образования и основные свойства оптических солитонов. Аналитические солитонные решения. Оптические солитоны: фундаментальный и высших порядков. Применение оптических солитонов в высокоскоростных линиях связи. Схемы солитонных волоконнооптических линий связи. Применение усилителей на эрбиевом волокне. /Пр/	4	2	ОПК-1	Л1.2Л2.1Л3. 1 Э1 Э2	0	

2.8	Основные области применения, современные проблемы и перспективы развития нелинейной оптики. Пути повышения скорости передачи информации. Роль нелинейных явлений в волоконно-оптической связи. Технология WDM. Фотонно-кристаллические волоконные световоды. Проблема полностью оптической обработки сигналов. /Пр/	4	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
	Раздел 3. Самостоятельная работа						
3.1	изучение теоретического материала по учебной и учебно-методической литературе; /Ср/	4	28	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
3.2	отработка навыков решения задач по темам практических занятий; /Cp/	4	20	ОПК-1	Л1.2Л2.1Л3. 1 Э1 Э2	0	
3.3	подготовка РГР и сдача расчетнографической работы. /Ср/	4	26	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	
	Раздел 4. Контроль.						
4.1	Подготовка к сдаче и сдача экзамена. /Экзамен/	4	36	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2	0	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Размещены в приложении

	6. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦ	иплины (модуля)				
	6.1. Рекомендуемая литература						
	6.1.1. Перечен	ь основной литературы, необходимой для освоения дисципл	ины (модуля)				
	Авторы, составители	Заглавие	Издательство, год				
Л1.1	Ишанин Г.Г., Челибанов В.П., Коротаев В.В.	Приемники оптического излучения: учеб. для вузов	Санкт-Петербург: Лань, 2014,				
Л1.2	Кульчин Ю.Н.	Современная оптика и фотоника нано- и микросистем: моногр.	Москва: Физматлит, 2016,				
	6.1.2. Перечень д	ополнительной литературы, необходимой для освоения диси	иплины (модуля)				
	Авторы, составители	Заглавие	Издательство, год				
Л2.1	Н.Н. Безрядин	Квантовые и оптические процессы в твердых телах: теория и практика	Воронеж: Воронежский государственный университет инженерных технологий, 2015, http://biblioclub.ru/index.php? page=book&id=336036				
6.	1.3. Перечень учебно-м	етодического обеспечения для самостоятельной работы обуч	нающихся по дисциплине				
	Ι Δ	(модулю)	11.				
Л3.1	Авторы, составители Максименко В.А., Горлова Т. О.	Заглавие Исследование фотоупругости поляризационно-оптическим методом: метод. указ. по выполнению лабораторной работы	Издательство, год Хабаровск: Изд-во ДВГУПС, 2016,				
6.	6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)						
Э1	Электронный каталог 1	НТБ ДВГУПС	http://ntb.festu.khv.ru/				
Э2	Научная электронная б	иблиотека eLIBRARY.RU	http://elibrary.ru/				

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

Windows XP - Операционная система, лиц. 46107380

Антиплагиат - Система автоматической проверки текстов на наличие заимствований из общедоступных сетевых источников, контракт 12724018158180000974/830 ДВГУПС

ACT тест - Комплекс программ для создания банков тестовых заданий, организации и проведения сеансов тестирования, лиц. ACT. PM. A096. J108018.04, дог. 372

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

Профессиональная база данных, информационно-справочная система Гарант - http://www.garant.ru

Профессиональная база данных, информационно-справочная система КонсультантПлюс - http://www.consultant.ru

Аудитория	Назначение	ЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Оснащение
3322	Помещения для самостоятельной работы обучающихся. Читальный зал НТБ	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
3417	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты
3434	Учебная аудитория для проведения занятий лекционного типа.	комплект учебной мебели, тематические плакаты. Технические средства обучения: интерактивная доска, проектор, ноутбук. Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security
423	Помещения для самостоятельной работы обучающихся. зал электронной информации	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
3433	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Механика и молекулярная физика".	комплект учебной мебели, доска, тематические плакаты, установка для исследования твердого тела ФПТ1-8, установка для изучения зависимости скорости звука от температуры ФПТ1-7, установка для измерения теплоты парообразования ФПТ1-10, установка для определения универсальной газовой постоянной ФПТ1-12, установки лабораторные: маятник "Обербека" ФМ-14, "Соударение шаров" ФМ-17, "Модуль Юнга и модуль сдвига" ФМ-19, "Маятник универсальный ФМ-13, "Унифилярный подвес" ФМ-15. Технические средства обучения: интерактивная доска, мультимедиапроектор.

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические рекомендации по работе над конспектом лекций во время и после проведения лекции В ходе лекционных занятий студентам необходимо вести конспектирование учебного материала, при этом запись лекций рекомендуется вести по возможности собственными формулировками. Желательно оставить в рабочих конспектах поля, на которых во внеаудиторное время можно сделать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Следует обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации по их применению, а также задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций. Над конспектами лекций надо систематическим работать: первый просмотр конспекта рекомендуется сделать вечером того дня, когда была прослушана лекции, затем вновь просмотреть конспект через 3-4 дня. В этом случае при небольших затратах времени студент основательно и глубоко овладевает материалом и к сессии приходит хорошо подготовленным. Работая над конспектом лекций, всегда следует использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Самостоятельная подготовка студента к следующей лекции должна состоять в первую очередь в перечитывании конспекта предыдущей лекции.

Методические рекомендации к практическим занятиям

В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы. При подготовке к экзамену необходимо ориентироваться на конспекты лекций, рекомендуемую литературу,

образовательные Интернет-ресурсы. Студенту рекомендуется также в начале учебного курса познакомиться со следующей учебно-методической документацией:

- программой дисциплины;
- перечнем знаний и умений, которыми студент должен владеть;
- тематическими планами практических занятий;
- учебниками, пособиями по дисциплине, а также электронными ресурсами;
- перечнем вопросов к экзамену.

После этого у студента должно сформироваться четкое представление об объеме и характере знаний и умений, которыми надо будет овладеть в процессе освоения дисциплины. Систематическое выполнение учебной работы на практических занятиях позволит успешно освоить дисциплину и создать хорошую базу для сдачи экзамена.

При подготовке к практическим занятиям студентам рекомендуется: внимательно ознакомиться с тематикой практического занятия; прочесть конспект лекции по теме, изучить рекомендованную литературу; составить краткий план ответа на каждый вопрос практического занятия; проверить свои знания, отвечая на вопросы для самопроверки; если встретятся незнакомые термины, обязательно обратиться к словарю и зафиксировать их в тетради; при затруднениях сформулировать вопросы к преподавателю.

Выполнение РГР осуществляется в домашних условиях.

Темы для РГР:

- 1. Физические причины различий между линейной и нелинейной оптикой.
- 2. Классификация нелинейных эффектов в оптике.
- 3. Генерация второй гармоники.
- 4. Модели гармонического и ангармонических осцилляторов.
- 5. Однофотонные и многофотонные процессы.
- 6. Влияние рефракционного индекса на характер эволюции светового пучка.

Вопросы для зашиты РГР:

- 1. Интенсивность света и ее влияние на характер оптических явлений.
- 2. Нарушение принципа суперпозиции в нелинейной оптике.
- 3. Физические причины различий между линейной и нелинейной оптикой.
- 4. Волновое уравнение для электромагнитного поля в нелинейной среде.
- 5. Нелинейные оптические восприимчивости и их свойства.
- 6. Классификация нелинейных эффектов в оптике.
- 7. Нелинейно-оптическое преобразование частоты в квадратично-нелинейной среде.
- 8. Генерация второй гармоники.
- 9. Классические и квантовые модели взаимодействия светового поля с веществом.
- 10. Модели гармонического и ангармонических осцилляторов.
- 11. Однофотонные и многофотонные процессы.
- 12. Виды многофотонных переходов и оценка их вероятности.
- 13. Квантовомеханические закономерности многофотонных переходов.
- 14. Физические механизмы, приводящие к зависимости показателя преломления от интенсивности света.
- 15. Влияние рефракционного индекса на характер эволюции светового пучка.
- 16. Самофокусировка и самоканализация световых пучков.

Для защиты РГР студент самостоятельно изучает вопросы соответствующего раздела теории, повторяет физические законы и явления, необходимые для решения конкретной задачи.

Защита РГР происходит на консультации, в установленное преподавателем время. Положительная отметка, полученная студентом при защите, выступает необходимой составляющей для допуска к зачету по данной дисциплине.

Самостоятельная работа студентов

Виды самостоятельной работы студентов и их состав

- изучение теоретического материала по учебной и учебно-методической литературе;
- отработка навыков решения задач по темам практических занятий;
- выполнение и оформление расчетно-графического задания;
- подготовка к защите расчетно-графического задания;

Технология организации самостоятельной работы обучающихся включает использование информационных и материально -технических ресурсов университета: библиотеку с читальным залом, укомплектованную в соответствии с существующими нормами; учебно-методическую базу учебных кабинетов; компьютерные классы с возможностью работы в Интернет; аудитории для консультационной деятельности; учебную и учебно-методическую литературу, разработанную с учетом увеличения доли самостоятельной работы студентов, и иные методические материалы.

Обеспечение обучающихся инвалидов и лиц с ограниченными возможностями здоровья печатными и электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала.

Для освоения дисциплины будут использованы лекционные аудитории, оснащенные досками для письма, мультимедийное оборудование: проектор, проекционный экран. Для проведения семинарских (практических) занятий - мультимедийное оборудование: проектор, проекционный экран.

Освоение дисциплины инвалидами и лицами с ограниченными возможностями здоровья осуществляется с использованием средств обучения общего и специального назначения:

- лекционная аудитория: мультимедийное оборудование, источники питания для индивидуальных технических средств;
- учебная аудитория для практических занятий (семинаров): мультимедийное оборудование;
- аудитория для самостоятельной работы: стандартные рабочие места с персональными компьютерами.

В каждой аудитории, где обучаются инвалиды и лица с ограниченными возможностями здоровья, предусмотрено соответствующее количество мест для обучающихся с учетом ограничений их здоровья.

Для обучающихся инвалидов и лиц с ограниченными возможностями здоровья предусмотрено обслуживание по межбиблиотечному абонементу (МБА) с Хабаровской краевой специализированной библиотекой для слепых. По запросу пользователей НТБ инвалидов по зрению, осуществляется информационно-библиотечное обслуживание, доставка и выдача для работы в читальном зале книг в специализированных форматах для слепых.

Разработка при необходимости индивидуальных учебных планов и индивидуальных графиков обучения инвалидов и лиц с ограниченными возможностями здоровья.

Обучающиеся инвалиды, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей и образовательных потребностей конкретного обучающегося.

Под индивидуальной работой подразумевается две формы взаимодействия с преподавателем: индивидуальная учебная работа (консультации), т.е. дополнительное разъяснение учебного материала и углубленное изучение материала с теми обучающимися, которые в этом заинтересованы, и индивидуальная воспитательная работа. Индивидуальные консультации по предмету становятся важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или обучающимся с ограниченными возможностями здоровья.

При составлении индивидуального графика обучения необходимо предусмотреть различные варианты проведения занятий: в академической группе и индивидуально, на дому с использованием дистанционных образовательных технологий.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Обучающиеся инвалиды, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей и образовательных потребностей конкретного обучающегося.

Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Направление: 12.03.03 Фотоника и оптоинформатика

Направленность (профиль): Оптические и квантовые технологии

Дисциплина: Нелинейная оптика

Формируемые компетенции:

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект	Уровни сформированности	Критерий оценивания
оценки	компетенций	результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

Достигнутый	Характеристика уровня сформированности	Шкала оценивания
уровень результата обучения	компетенций	Экзамен или зачет с оценкой
Низкий уровень	Обучающийся: -обнаружил пробелы в знаниях основного учебно-программного материала; -допустил принципиальные ошибки в выполнении заданий, предусмотренных программой; -не может продолжить обучение или приступить к профессиональной деятельности по окончании программы без дополнительных занятий по соответствующей дисциплине.	Неудовлетворительно
Пороговый уровень	Обучающийся: -обнаружил знание основного учебно-программного материала в объёме, необходимом для дальнейшей учебной и предстоящей профессиональной деятельности; -справляется с выполнением заданий, предусмотренных программой; -знаком с основной литературой, рекомендованной рабочей программой дисциплины; -допустил неточности в ответе на вопросы и при выполнении заданий по учебно-программному материалу, но обладает необходимыми знаниями для их устранения под руководством преподавателя.	Удовлетворительно
Повышенный уровень	Обучающийся: - обнаружил полное знание учебно-программного материала; -успешно выполнил задания, предусмотренные программой; -усвоил основную литературу, рекомендованную рабочей программой дисциплины; -показал систематический характер знаний учебно-программного материала; -способен к самостоятельному пополнению знаний по учебно-программному материалу и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.	Хорошо

Высокий	Обучающийся:	Отлично
уровень	-обнаружил всесторонние, систематические и глубокие знания	
	учебно-программного материала;	
	-умеет свободно выполнять задания, предусмотренные	
	программой;	
	-ознакомился с дополнительной литературой;	
	-усвоил взаимосвязь основных понятий дисциплин и их значение	
	для приобретения профессии;	
	-проявил творческие способности в понимании учебно-	
	программного материала.	

Описание шкал оценивания Компетенции обучающегося оценивается следующим образом:

Планируемый уровень	Кодержание шкалы оценивания достигнутого уровня результата обучения					
результатов	Неудовлетворительн	Удовлетворительно	Хорошо	Отлично		
освоения	Не зачтено	Зачтено	Зачтено	Зачтено		
Знать	Неспособность обучающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся способен самостоятельно продемонстриро-вать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся демонстрирует способность к самостоятельному применению знаний при решении заданий, аналогичных тем, которые представлял преподаватель, и при его	Обучающийся демонстрирует способность к самостоятельно-му применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части		
Уметь	Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.	Обучающийся демонстрирует самостоятельность в применении умений решения учебных заданий в полном соответствии с образцом, данным преподавателем.	и при его Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	межлисииплинарных Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.		
Владеть	Неспособность самостоятельно проявить навык решения поставленной задачи по стандартному образцу повторно.	Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем.	Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.		

Вопросы к экзамену:

Компетенция ОПК-1:

- 1. Интенсивность света и ее влияние на характер оптических явлений. Нарушение принципа суперпозиции в нелинейной оптике. Физические причины различий между линейной и нелинейной оптикой.
- 2. Волновое уравнение для электромагнитного поля в нелинейной среде. Нелинейные оптические восприимчивости и их свойства. Классификация нелинейных эффектов в оптике.
- 3. Нелинейно-оптическое преобразование частоты в квадратично-нелинейной среде. Генерация второй гармоники. Опыт Франкена.
- 4. Классические и квантовые модели взаимодействия светового поля с веществом. Модели гармонического и ангармонических осцилляторов. Правило Миллера.
- 5. Физические механизмы, приводящие к зависимости показателя преломления от интенсивности света. Влияние рефракционного индекса на характер эволюции светового пучка. Самофокусировка и самоканализация световых пучков.
 - 6. Физические процессы, вызывающие фазовую самомодуляцию (ФСМ) и

фазовую кросс-модуляцию (Φ KM) в оптических волокнах. Влияние Φ CM и Φ KM на характеристики волоконно-оптических линий связи.

- 7. Вынужденное комбинационное рассеяние (ВКР) и вынужденное рассеяние Мандельштама-Бриллюэна (ВРМБ), их физический механизм.
 - 8. Обращение волнового фронта, четырехволновое смешение, вынужденное рассеяние.
- 9. Модели эволюции нелинейных волн: уравнения Римана, Бюргерса, Кортевега-де Фриза, нелинейное уравнение Шредингера, обобщенное эволюционное уравнение.
 - 10. Основные свойства оптических солитонов. Аналитические солитонные решения. Применение оптических солитонов в высокоскоростных линиях связи.
 - 11. Методы сжатия оптических импульсов в диспергирующих средах (волоконно-решеточная компрессия, многосолитонная компрессия).

Контрольные вопросы к практическим занятиям и РГР:

Компетенция ОПК-1:

- 1. К некогерентным оптическим явлениям, не требующим выполнения дополнительных фазовых соотношений, относится...
- 1) генерация второй гармоники; 2) параметрическое усиление света;
- 3) параметрическая генерация света; 4) самофокусировка светового пучка;
- 5) четырехволновое смешение.
- 2. Интенсивность оптического излучения, напряженность электрического поля которого равна внугриатомной напряженности, имеет порядок...
- 1) 20 BT/M2; 2) 104 BT/M2; 3) 1014 BT/M2; 4) 1020 BT/M2; 5) 1025 BT/M2.
- 3. В формуле для отношения интенсивностей волны 2-ой гармоники и падающей волны (Δk волновая расстройка) в случае точного выполнения условия фазового синхронизма следует положить...
 - 1) $I(2\omega) = 0$; 2) $z \to \infty$; 3) $\Delta k \to \infty$; 4) $\Delta k = 0$; 5
- 4. Одним из способов плавной регулировки частоты в параметрическом генераторе света является...
- 1) изменение расстояния между зеркалами резонатора; 2) изменение интенсивности волны накачки; 3) нагрев нелинейного кристалла; 4) нарушение условия фазового синхронизма; 5) увеличение размеров нелинейного кристалла.
- 5. Принципиальная возможность реализации многофотонных переходов при взаимодействии излучения с веществом вытекает из...
 - 1) моделей классических осцилляторов; 2) нелинейного волнового

уравнения; 3) нулевой вероятности виртуальных состояний;

- 4) эффекта насыщения; 5) законов квантовой механики.
- 6. Если величина коэффициента дисперсии групповой скорости увеличится в 2 раза, то при этом соответствующая дисперсионная длина DL ...
 - 1) увеличится в 2 раза; 2) не изменится; 3) уменьшится в 2 раза;
 - 4) увеличится в 4 раза; 5) уменьшится в 4 раза.
- 7. Явление модуляционной неустойчивости при распространении оптических импульсов в нелинейной среде с дисперсией иллюстрирует процесс...
 - 1) нелинейного набега фазы; 2) нелинейно-оптического преобразования

частоты; 3) наведения положительного чирпа; 4) четырехволнового

смешения; 5) распада непрерывной волны на ряд коротких волн.

- 8. Если P мощность, требуемая для формирования фундаментального солитона, то для образования солитона 2-го порядка необходима мощность, примерно равная...
 - 1) 2P; 2) 4P; 3) P; 4) P/2; 5) P/4.
 - 9. При измерении длительности сверхкоротких оптических импульсов используется нелинейный

эффект...

- 1) оптического детектирования; 2) генерации 2-ой гармоники;
- 3) самофокусировки; 4) коллапса волнового поля; 5) оптического пробоя.
- 10. При уменьшении скорости передачи информации по одномодовому волоконному световоду от $B1 = 40~\Gamma$ бит/с до $B2 = 20~\Gamma$ бит/с коэффициент искажения сигналов за счет действия фазовой самомодуляции и кросс-модуляции...
 - 1) возрастет примерно в 2 раза; 2) возрастет примерно в 4 раза;
 - 3) не изменится; 4) уменьшится примерно в 2 раза;
 - 5) уменьшится примерно в 4 раза.
- 11. Интенсивность излучения современных сверхмощных лазеров превышает максимальную интенсивность долазерных источников света...
 - 1) примерно в 2 раза; 2) примерно на один порядок;
 - 3) примерно на 5 порядков; 4) примерно на 10 порядков;
 - 5) примерно на 20 порядков.
- 12. К факторам, усиливающим роль нелинейных оптических эффектов в волоконно- оптических системах передачи информации, относится...
 - 1) повышение мощности, вводимой в волоконный световод; 2) снижение

скорости передачи информации; 3) отказ от спектрального уплотнения

каналов; 4) уменьшение коэффициента нелинейности.

13. Если $\lambda 0$ и λD — соответственно длина волны минимальных потерь и длина волны нулевой дисперсии, то одним из условий образования оптических солитонов в одномодовых волокон-

ных световодах является...

- 1) $\lambda < \lambda 0$; 2) $\lambda < \lambda D$; 3) $\lambda > \lambda D$; 4) $\lambda > \lambda 0$; 5) $\lambda D < \lambda < \lambda 0$.
- 14. К нерешенным проблемам современной нелинейной волоконной оптики относится... 1) создание лазеров сверхкоротких импульсов; 2) накачка с помощью лазерных дио-

дов; 3) технология спектрального уплотнения каналов; 4) широкополосное оптическое усиление; 5) достижение терабитных скоростей передачи по волокну.

Типовые практические задания к РГР.

Компетенция ОПК-1:

- 1. Рассчитать нелинейный набег фазы и максимальный частотный сдвиг для гауссового оптического импульса, обусловленные эффектом фазовой само-модуляции.
 - 2. Рассчитать мощность, необходимую для формирования оптического соли-тона N-го порядка.
 - 3. Используя данные нижеприведенной таблицы о характеристиках

нелинейных кристаллов и пренебрегая двулучепреломляющими свойствами этих материалов, рассчитать волновую расстройку $k\square$ между основной волной и волной второй гармоники и длину когерентности $L\kappa$ (результаты расчетов представить в виде таблицы). Сделать вывод о предпочтительности использования представленных

кристаллов в опыте по генерации второй гармоники. Длина волны основного излучения, падающего на нелинейный кристалл, равна $\lambda = 1,06$ мкм.

№

 π/π Материал,хим. формула Показатель преломления (для лины волны λ) Показатель преломления (для длины волны λ)

- 1 Дигидрофосфат калия KH2PO4 1,49 (λ = 1,06 мкм) 1,52 (λ = 0,53 мкм
- 2 Йодат лития LiIO3 1,86 (λ = 1,06 мкм) 1,90 (λ = 0,53 мкм)
- 3 Ниобат лития LiNbO3 2,23 ($\lambda = 1,06$ мкм) 2,24 ($\lambda = 0,53$ мкм)

Дисциплина: нелинейная оптика

Экзаменационный билет №

- 1. Фазовый (волновой) синхронизм. Интерференционная природа фазового синхронизма. Обеспечение синхронизма в анизотропных нелинейных кристаллах.
- 2. Вынужденное комбинационное рассеяние (ВКР) и вынужденное рассеяние Мандельштама-Бриллюэна (ВРМБ), их физический механизм и сравнительная характеристика.
 - 3. Параметрический усилитель на основе нелинейного кристалла КDP

(показатель преломления $\pi = 1,49$; квадратичная оптическая восприимчивость $\chi(2) = 1,88 \cdot 10$ -12 м/В) длиной L = 4 см предназначен для усиления света с длиной волны $\lambda 1 = 550$ нм (сигнальная волна). Длина волны накачки составляет $\lambda 3 = 335$ нм, а ее интенсивность 13 = 1010 Вт/м2.

В предположении коллинеарности световых волн (накачки, сигнальной и холостой):

- записать условие согласования частот световых волн: сигнальной ω1, холостой ω2 и накачки ω3, а также условие фазового синхронизма для описанного случая;
- вычислить длину волны холостого излучения $\lambda 2$, возникающего в процессе параметрического усиления.

Образец экзаменационного билета

Дальневосточный государственный университет путей сообщения					
Кафедра	Экзаменационный билет №	Утверждаю»			
(к911) Физика и теоретическая	Нелинейная оптика	Зав. кафедрой			
механика	Направление: 12.03.03 Фотоника и	Пячин С.А., профессор			
4 семестр, 2024-2025	оптоинформатика	25.04.2024 г.			
_	Направленность (профиль):				
	Оптические и квантовые				
	технологии				
Вопрос Волновое уравнение для электромагнитного поля в нелинейной среде. Нелинейные оптические					
восприимчивости и их свойства. Кл	ассификация нелинейных эффектов в о	оптике. (ОПК-1)			
Вопрос Интенсивность света и	ее влияние на характер оптически	их явлений. Нарушение принципа			
суперпозиции в нелинейной оптике. Физические причины различий между линейной и нелинейной					
оптикой. (ОПК-1)					
Задача (задание) Рассчитать градиен	тную силу, действующую на наночаст	ицу в поле гауссова пучка света.			
(ОПК-1)					
Примечание В каждо	м экзаменационном билете до	лжны присутствовать вопросы			

Примечание. В каждом экзаменационном билете должны присутствовать вопросы, способствующих формированию у обучающегося всех компетенций по данной дисциплине.

3. Тестовые задания. Оценка по результатам тестирования.

Примерные задания теста

Задание 1 (ОПК-1)

Выберите правильный вариант ответа.

Условие задания: К некогерентным оптическим явлениям, не требующим выполнения

дополнительных фазовых соотношений, относится...

□ генерация второй гармоники;

□ параметрическое усиление света;

□ параметрическая генерация света;

□ самофокусировка светового пучка;

□ четырехволновое смешение.

Задание 2 (ОПК-1)

Нобелевская премия по физике за достижения, обеспечивающие прогресс в развитии оптических систем присуждена следующим физикам в историческом порядке...

- 1) американскому физику А. Ашкину (4)
- 2) американскому физику Н. Бломбергену (2)
- 3) российскому физику Ж.И. Алферову (3)
- 4)советским физикам Н.Г. Басову и А.М. Прохорову (1)

Задание 3 (ОПК-1)

Приведите соответствие

Одно из эталонных уравнений, описывающих эволюцию нелинейных волн, имеет следующий вид:

Какие слагаемые этого уравнения отвечают за физический фактор...

- 1) нелинейности (2)
- диссипации (3)
- 3) нестационарности (1)

Задание 4 (ОПК-1)

При многофотонном фотоэффекте интенсивное лазерное излучение

направляется на поверхность металла, при этом энергия падающих фотонов равна 1,5 эВ, а максимальная кинетическая энергия выбиваемых фотоэлектронов составляет 2 эВ. Известно, что для данного металла длина волны, соответствующая красной границе однофотонного фотоэффекта, равна 310 нм.

Определить:

- число фотонов, поглощаемых в каждом акте (степень

нелинейности) данного процесса;

-работу выхода электронов для данного металла (в Дж).

Объяснить, почему при многофотонном фотоэффекте отсутствует понятие «красной границы».

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

Объект	Показатели	Оценка	Уровень
оценки	оценивания		результатов
	результатов обучения		обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

Элементы оценивания	ооучающегося на вопросы, задачу (задание) экзаменационного оилета, зачета Содержание шкалы оценивания					
	Неудовлетворительн	Удовлетворитель	Хорошо	Отлично		
	Не зачтено	Зачтено	Зачтено	Зачтено		
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам.	Значительные погрешности.	Незначительные погрешности.	Полное соответствие.		
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию.	Незначительное несоответствие критерию.	Соответствие критерию при ответе на все вопросы.		
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.	Полное соответствие данному критерию ответов на все вопросы.		
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	Умение связать вопросы теории и практики проявляется редко.	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер.		
Качество ответов на дополнительные вопросы	На все дополнительные вопросы преподавателя даны неверные ответы.	Ответы на большую часть дополнительных вопросов преподавателя даны неверно.	. Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на дополнительные вопросы преподавателя.	Даны верные ответы на все дополнительные вопросы преподавателя.		

Примечание: оценивания.	итоговая	оценка	формируется	как	средняя	арифметическая	результатов	элементов